SailNet Community - View Single Post - Pros and cons of steel sailboats
View Single Post
  #387  
Old 08-05-2013
Brent Swain Brent Swain is offline
Banned
 
Join Date: Jan 2012
Location: British Columbia
Posts: 2,374
Thanks: 19
Thanked 33 Times in 32 Posts
Rep Power: 0
Brent Swain is on a distinguished road
Re: Pros and cons of steel sailboats

Quote:
Originally Posted by mark2gmtrans View Post
You are 100% correct in your assertion that there is no way to visually inspect a steel hull and certify it as to its integrity. When I had the oil field pipe business we had a machine that cost well over a million dollars that was one of the only ways to inspect steel pipe correctly. This machine is called an EMI and is basically an MRI for pipe, it uses several large magnetic coils to generate a field which can "see" through the pipe and detect microscopic defects and flaws in the pipe. This inspection is done on almost all oilfield casing and tubing, in an effort to prevent "blowouts" and reveals the flaws in the pipe. It does a great job, however there is not a good way to run an EMI on a hull, you cannot see the microfractures that come from stress on the material.

There are surveyors who use ultrasound to do hull inspections on steel boats. This is the only way to really get a good idea of the hull integrity, and it is costly. If you are purchasing a used mega-yacht the cost is not prohibitive, if you are purchasing a used sailboat under 40 feet it may be more than most would be willing to spend on a survey, and it takes up to two days to do it. There are not many people here in the states who can do an ultrasound hull survey, so that makes it even more fun.


The stress of an impact on the keel seam of a vessel weighing in at somewhere around 30,000 pounds is going to so far exceed the tensile strength of the material at the point of impact as to be able to cause incredible damage and still not be visible. The damage will be done at the molecular level, and this is something you cannot see or inspect on a survey, but it sure can come back to haunt you.


BS said that the steel he used had some huge million plus pound tensile strength, that is not true. I do not know how anyone can state that and even expect us to believe it, because there is not a single type of steel with a tensile strength that high. This is not an assumption, it is a fact.

If you use A36 steel, 3/16" thickness you have an estimated tensile strength of 36,000 pounds, that is what the 36 represents. Layering it to four layers does not increase the tensile strength at all, it does raise the amount of force needed to penetrate the hull, but not to 1,800,000 psi times four, as asserted by BS. I have no idea how BS came up with that number for tensile strength, but unless he can show me a metallurgical test for the specific hull plating used that gives a tensile strength of 1,800,000 psi I am going to have to say he has had a mathematical error somewhere in his calculations.

To start with 3/16" is too thin for a hull, especially at the keel, I would think that the keel would want to be done in about 3/4 inch steel plate, which is more like what BS is talking about with his four layers of 3/16 inch steel. The thing is that layering is good, but you still only get 36,000 psi you just get four layers of it. I have not done the math yet, but if you have a boat that weighs 36,000 pounds, which would not be at all out of line with a steel boat, I am guessing that when you factor in the speed and angle of the impact you get a good deal more than 36,000 psi, so the best thing to do with a steel hull remains the same as with any other hull....don't hit stuff. Now if Brent has some 1.8 million psi 3/16 inch steel somewhere he needs to start building pressure vessels and tanks with it, and maybe the military might like to have some too.

A36 is a standard low carbon steel, without advanced alloying.
As with most steels, A36 has a density of 7,800 kg/m3 (0.28 lb/cu in). Young's modulus for A36 steel is 200 GPa (29,000,000 psi).[2] A36 steel has a Poisson's ratio of 0.260, and a shear modulus of 79.3 GPa (11,500,000 psi).
A36 steel in plates, bars, and shapes with a thickness of less than 8 in (203 mm) has a minimum yield strength of 36,000 psi (250 MPa) and ultimate tensile strength of 58,000–80,000 psi (400–550 MPa). Plates thicker than 8 in have a 32,000 psi (220 MPa) yield strength and the same ultimate tensile strength.[1]
A36 bars and shapes maintain their ultimate strength up to 650°F. Afterward, the minimum strength drops off from 58,000 psi: 54,000 psi at 700°F; 45,000 psi at 750°F; 37,000 psi at 800°F. A36 steel has low carbon, that produce high strength to the alloy


Tensile strength and shear strength are not the same thing, and not only that, an impact exerts both tensile (pulling) and shear (cutting or tearing) forces on the point of impact and combined they will poke a hole in your boat. The hardness of the object impacted, the speed of the impact, the weight of the impacting object, and the angle of the impact along with some other factors are what determine the ultimate force of the impact, but steel, wood, concrete, fiberglass or a combination of all the above will not be enough to stop a sea container that fell off a ship from knocking a great big gaping sink your boat hole in the hull of a sailboat if you hit it at the right angle. Sailing a boat is not something that can ever be made 100% safe, there are risks involved, but the rewards far outweigh the risks, if I die while sailing I will have died doing something I enjoyed. If I die while sailing on a steel boat or a wooden boat I will still be dead.
Mild steel is 60,000 PSI tensile and compression strength . That is 11250 per linear inch for 3/16th plate. Multiply that by the 96 inches in the side of one of my twin keels. That is 1.08 million pounds per side, times four keels sides.
How are you going to break that with a boat under 20,000 lbs?
Just saw two navy 100 footers in Heroit bay. 3/16th hull plate on 100 ft navy ships . And you say the same plate thickness is too light for a 36 foot pleasure boat? You say that a boat which could survive 16 days pounding in 8 to 12 ft surf on the west coast of the Baja, or pounding across 300 yards of Fijian coral reef in big surf, or colliding with a freighter, or hitting the sharp corner of a sunken barge at hull speed, all with minimal damage, is not strong enough? Now that's a stretch!
My hulls are all single thickness, 1/8th for the decks cabin, etc, 3/16th for the hull ,1/4 for the keel sides, and half inch for the keel bottom ( with 4500 lbs of lead ballast poured on top)
Layering steel is a big mistake, guaranteeing corrosion between the layers unless totally sealed.

A good whack with a sledge hammer and a centre punch on lower parts of keels, etc, where corrosion is most likely, is a good starting point on buying a steel boat. If it doesn't give, you have enough thickness there.
Structural failures of steel boats under 40 feet are extremely rare. Your "Invisible " fractures have zero chance of ever causing any problems in steel boats under 40 feet in their lifetimes.
How does such "invisibly fractured" steel compare in strength to a copper fastening in red cedar every six inches, or six inches of plastic?

Last edited by Brent Swain; 08-05-2013 at 07:37 PM.