Marine Battery Chargers - Installation Tips & Considerations - SailNet Community

   Search Sailnet:

 forums  store  


Quick Menu
Forums           
Articles          
Galleries        
Boat Reviews  
Classifieds     
Search SailNet 
Boat Search (new)

Shop the
SailNet Store
Anchor Locker
Boatbuilding & Repair
Charts
Clothing
Electrical
Electronics
Engine
Hatches and Portlights
Interior And Galley
Maintenance
Marine Electronics
Navigation
Other Items
Plumbing and Pumps
Rigging
Safety
Sailing Hardware
Trailer & Watersports
Clearance Items

Advertise Here






Go Back   SailNet Community > On Board > Gear & Maintenance > Electrical Systems
 Not a Member? 


Like Tree5Likes
Reply
 
LinkBack Thread Tools
  #1  
Old 01-05-2012
Maine Sail's Avatar
Senior Member
 
Join Date: Jan 2003
Location: Maine Coast
Posts: 5,277
Thanks: 9
Thanked 115 Times in 84 Posts
Rep Power: 15
Maine Sail is just really nice Maine Sail is just really nice Maine Sail is just really nice Maine Sail is just really nice
Marine Battery Chargers - Installation Tips & Considerations

With battery banks getting larger & larger and battery technology becoming more and more expensive a quality battery charger is not the place you want to skimp on features or quality.

For this install I used a Sterling Pro Charge Ultra. When selecting a marine battery charger there are certain things I find to be important.

1- The charger should be built to ABYC / UL 1236 standards. These standards are specific to the marine industry, though I think the emergency market such as rescue and ambulance also use UL 1236. This standard is created around safety and isolation of AC & DC. A UL 1236 charger has undergone a 1500 volt test to ensure there is adequate AC/DC isolation inside the charger. 1500 VOLTS !!!!! While there are some non-marine chargers that can do quite well in the marine environment the UL 1236 or "ABYC" compliant statement or logo will be a good guide and won't leave you guessing if the charger you chose can handle the environment or is well suited to a marine application.

This quote was published in an ABYC referenced article and written by corrosion survey specialist Stanley Konz.

"WHAT WE FOUND
Burnt and corroded shore power cords
Improper AC Neutral to DC negative connections
Reversed battery cables
The failure of an automatic inverter ground switch
Oversized breakers
A BATTERY CHARGER INPUTTING 110AC INTO THE BATTERIES
Wire nuts used
Undersized wire
Hard (house type) untinned wires"


A BATTERY CHARGER INPUTTING 110AC INTO THE BATTERIES!!!!!!!!!!!!!!!! It is critical you choose a well built charger and wire it properly. If you don't fully understand the above points made by Mr. Konz you should consider consulting a qualified marine electrical systems specialist for this install.

That article goes onto say that nearly 1/3 of the boats in that marina were leaking AC current directly into the water! DIY wiring mistakes, even by those meaning well, can often be a major player in these "leaks". Please be careful and follow acceptable safety guidelines.

2- The charger should work on varying input voltages and not suffer from output limiting. This Sterling PCU is a "World Voltage" power factor corrected charger and will work on any voltage from 90-260 volts/ 40-80 hz and still supply 100% of its rated output. You can plug this charger in to voltages in just about all countries on the planet. If you're a cruiser this is a critically important feature. If you have a US voltage charger you're stuck charging at US voltage/hz docks.. There are MANY docks out there with voltage drop issues and even at 90 volts AC, with the Sterling PCU, you're still getting the full rated charger output.

3- The charger should ideally offer battery temperature sensing and come with the sensor as standard equipment, not an "extra".

4- The charger needs to have a good warranty and the manufacturer should have a good reputation for customer service/support. This charger carries a 5 year warranty and the Support at Sterling Power USA has been outstanding.

5- The charger should include multiple options for charging voltages/programs.

6- The charger should be multi-stage with at least Bulk, Absorption, Float. I prefer them to also include a Conditioning/Equalizing program.

7- The charger should work well with marine generators. Many chargers, especially non-marine units, do not work well with a marine gen set as the generators do not output a pure sine wave.

8- For charging wet cell batteries I prefer a charger that will revert to an absorption voltage periodically when left in standby/float mode. This programmed absorption voltage cycle helps to minimize electrolyte stratification. Float current alone is often not enough to prevent the electrolyte from stratifying. An absorption voltage, run periodically for a short duration, very often prevents the effects of stratification.

Stratification is when the acid sinks to the bottom of the battery case and the water rises to the top of the battery case. It creates uneven plate wear and can lead to premature death of the battery. A cyclic absorption voltage will get the electrolyte moving again and minimize any effects of stratification. Not all chargers offer this very useful "cyclic absorption" feature.



Sizing The Charger
This is a decision that is entirely up to the user, with some caveats. The general consensus is to size a hard wired charger for 10% of the banks capacity. In this case a 400Ah battery bank would get a 40A charger. Sizing at 10% of capacity or less allows thick plate deep cycle batteries to accept the current deep into the plates for a full charge.

If you size on the low side you must also consider the DC load your boat will use at the dock, when using DC devices. You should consider this load number when trying to get to your 10% sized charger. For instance some power boats & sailboats have small banks under 200Ah. This would suggest a 20A charger. This is well and good except when your dockside DC devices can consume more than 20A, lighting DC refrigeration, computer, TV stereo etc. etc.. In this case you could have a 20A charger sized at 10% of "bank capacity" but still be drawing your bank down, and not charging it, anytime the DC loads exceed what the charger can deliver. As I said, "with some caveats".. Size carefully and don't forget to consider the dockside DC consumption.

The Sterling PCU chargers have no problem charging a large bank and can run at full output for hours & hours on end. The cooling fan on these chargers is a variable output design to let these chargers run quieter. Chargers with single speed fans are most often louder as the fan is either on or off. I have yet to have the fans kick on very often with the Sterling PCU chargers.

Some chargers, usually fan-less units, can not charge large banks without suffering from internal heat build up. This can result is a shortened life for the charger if it is not sized correctly. The more efficient the charger is the less heat it will produce. The Power Factor Corrected Sterling PCU is near 90% efficient which is a boost over non Power Factor Corrected chargers of as much as 40%!

What the heck does that mean? What it means is you'll have a cooler running charger, less noise/fan, a smaller foot print because leas heat needs to be dissipated and you'll use less AC power to charge at the same DC output than a non Power Factor Corrected charger. Even the Sterling PCU 60A model will easily run off a Honda EU2000i generator and leave you with LOTS of left over wattage, about 700W left over, to run other devices while charging your bank at 60A. NOTE: The Honda EU2000i, a popular gas suitcase generator used on small boats, has a constant load rating of just 1600 watts and is not really a "2000 watt" generator for constant loads.

Sizing to the 10% rule, or better yet, the manufacturers suggestion, is a better choice with non Power Factor Corrected chargers as they develop more heat. The Sterling Chargers are highly efficient so being in the 10% of capacity range is not as crucial with these units or other Power Factor Corrected chargers. The "time" you need to charge can be simply based on just that, "time".

If you had a 400Ah bank and wanted it charged from 50% state of charge, to full, over one day, you can get away with a 20A charger. Even if the charger is sized at just 5% of total bank capacity your really only drawing your 400Ah bank down to 50% state of charge. By following the 50% max depth of discharge rule for house banks you would only need to replace 200 amp hours, plus charge inefficiencies. If however you need it charged back to full in 10 hours, well that's just not going to happen with a 20A charger.

Conversely if you power your charger off a generator, when away from the dock as many boaters do, you will want as much charger as your batteries will accept to keep generator run times as short as possible. My one and only real gripe with the Sterling chargers is the largest single charger is 60A. On vessels with large banks or AGM or other types of batteries that have high acceptance rates as 60A charger can limit your recharge times when using a gen set to charge while away from the dock. For larger chargers Victron & Mastervolt make good ones, or simply double up on the Sterling. Using two separate chargers will give you the added benefit of a back up if the other charger fails. In bulk mode, what you'd be doing mostly with genset charging, both chargers will be pumping out to max acceptance of the bank or their limit. Need more, you can go to three..

Sizing can be a personal preference often based on how "quickly" you need to replenish the bank or necessitated by the charger you choose and its abilities. Deep cycle batteries like to be slow charged, so if your alternator is large, then it may make sense to have a smaller 120V charger for good deep slow charges of your bank. With boats we often don't have a choice but to "fast charge" our banks, especially if off cruising.

If your vessel is at a dock for long periods of time, or your boat is used weekends only, the added cost and size of a large charger, and the associated wiring, are often wasted if not really needed. Always check with your charger manufacturer to see how long the charger you're considering can be run at full output, especially if sizing on the small side of the charge/time equation. Some won't tolerate full output for very long, and others will barely feel it.



Adding A Remote
More often than not your battery charger will be located out of sight and the front control panel may not be easily accessible. To deal with this quirk many quality chargers offer a remote display panel. They are a great feature to look for when choosing a charger.

The remote for the Sterling Pro Charge Ultra is quite feature packed and offers a multitude of options including monitoring DC output voltage, AC input voltage, DC current output, battery temperature. charger temperature, transformer temperature, total charging time, charging time this event and just about anything the charger is doing or has done. It is one of the most informative remotes I have seen on a battery charger at any price point. It is a very nice piece of gear.

Wiring the remote is simple, four mounting screws and two plug & play phone jack type connections. It can be flush mounted or surface mounted and both options are included with the remote, plus the cable.

Marine chargers from companies like Sterling, Mastervolt, Victron, ProMariner & others will often have a remote option. It should be noted that this charger is also sold by ProMariner as the ProNauticP. These chargers were a joint venture between Sterling & ProMariner & both carry the same 5 year warranty in the US.

Marine chargers from companies like Sterling, Mastervolt, Victron, ProMariner & others will often have a remote option.




11 Pre-Sets and One User Programmable Charge Profile
The Sterling PCU packs a lot of features into this small form factor charger. Right out of the box it has 11 preset charging profiles. On top of the 11 presets it also has one custom profile that can be tailored for a battery not already met by the preset options.

There are very few battery chargers, at any price, that currently allow the user to build their own charging parameters. A very cool feature for those who may need it, like the owners of Lifeline batteries.

As an example Lifeline battery, the AGM battery manufacturer, wants to see 15.5V, temp compensated, for 8 hours to "condition" (equalize/desulfate) their batteries. Many other competitors chargers have an equalization setting of 16 volts for 1 hour or 16 volts for 4 hours or 15.5 volts for an hour etc. etc.. With the Sterling Pro Charge Ultra you can custom build a "conditioning" cycle that matches the Lifeline battery manufacturer suggestions or any other manufacturers suggestions if not already covered by the 11 preset. All equalization charges should be TEMP COMPENSATED so be sure your charger has a temp sensor if you're going to be equalizing.

Here you'll see the 11 presets, and their voltages, plus the custom user profile.




DC Charger Outputs
This 20A charger comes standard with three outputs which can be fed to three different banks. The output is distributed by demand not divided equally as some chargers are. So if a start battery was at 99% state of charge and your house bank was at 60% state of charge the house bank would likely be seeing the vast majority of the charging current 18-19A or so and the starter would be seeing 1-2A or less.

For owners who have a charge distribution system in place, such as an Echo Charger, Duo Charger, VSR (voltage sensitive combining relay), or in the US often referred to as an ACR (Automatic Combining Relay), the outputs can be "jumped" together as shown to create a simple "single output" charger.

Technically with this charger you don't need to "jump" the unused outputs if using it as a single output charger. The US distributor feels, and I agree, that it is a wise idea to equally load the output FET's so I chose to jumper than to even load the ouputs. The two red jumpers are jumping output 1, 2 & 3 to load all the output FET's equally. This essentially makes the charger a single output 20A charger rather than a three output 20A charger. All current in this installation will feed to the house bank and the starting bank will be charged via a Blue Sea Systems ACR relay. You would do the same with an Echo or Duo Charger.

This particular boat has an ACR / Automatic Combining Relay so the charger is being used as a single output. Keep in mind that nearly all chargers, with the exception of some very expensive ones, still only have ONE output setting, in terms of charge profile, so dividing it up is not really necessary unless you don't have an ACR, Echo Charger or Duo Charger type of battery bank charge distribution.

Also note the location of the green fuse. This is the charger output fuse and it well located and easy to change if necessary.

The two heat shrink ring terminals are just illustrating where you can connect the neg and possitive battery leads to.

It should be noted that on 30A and larger Sterling Pro-Charge Ultra chargers they use large studs as opposed to a small terminal strip for the DC output. I really wish the 20A model had these studs too but it does not. For that reason alone I would suggest considering the 30A or larger model if you can.




Choose A Location
The location your charger is mounted in plays a critical role in its life span & longevity. Care should be taken to follow your manufacturers instructions of orientation, access to air, moisture or battery gas exposure.

1 - Mount the charger in a location were it can run cool and air can move around it. An engine space is often a poor location because the engines, and engine bay, remain warm long after the engine has been shut down. Many also have water heaters that can keep the temps in these small areas higher than average. While on many vessels you don't have a choice in this matter, due to space constraints, always look for a location outside the engine space before installing there. If the charger has a fan be sure to mount the inlet and outlet in areas where they will have unobstructed air flow. If necessary, or prudent for your charger, you can cut ventilation holes in lockers, and then cover the holes with pre-made ventilation grills to allow air flow. Ventilation for your charger does not have to look bad. There are many grill options available from teak to stainless steel.

2 - If your hull is a dark color it is best to avoid mounting the charger directly to the inside of the hull. Topside hull temps, in direct sun, with dark colors, can easily exceed 140F! I have one customer who's AGM's were dead every two seasons use, about 100 cycles, like clock work. He had done everything suggested by the manufacturer including installing solar for his mooring sailed boat to keep them at or near full charge. It was not until I measured the battery compartment temps at 133F, located behind the cabin settee seat back, that we figured out his failure mode. Just as heat is bad for batteries it is also bad for the charger. A cool running charger is a happy charger. If your chargers fan runs constantly it may be trying to tell you something..

3 - Battery chargers should not be mounted in a battery compartment/space despite being ignition protected. Corrosive battery gas can damage the metals in the charger and lead to shorter life or corrosive damage. All lead acid batteries, WET, GEL and AGM have the potential to vent corrosive gas. Just because your battery is a VRLA design does not mean it won't vent corrosive gas if over temped or over charged. A battery compartment is an absolute last resort location for a charger.

4 - Try to find a location that is dry and will not have the possibility of water dripping on the charger. If there's even a slight potential of water exposure a drip shield should be constructed to protect the charger. The drip shield should prevent water from damaging the charger, but also allow for proper cooling. This is not always an easy task so mounting in a known dry spot is always the best approach. Generally speaking, higher in the boat is often better than lower in the boat for a charger mounting location. Areas closer to the bilge, or with direct ambient access to the moist bilge air, tend to be more humid and corrosive environments.

5 - Try to mount the charger as close to the battery bank/banks as possible without mounting in the battery or engine compartment. Shorter wire runs mean less installation cost, less voltage drop can make for better charger performance over the long haul.

6 - The area on your vessel where the charger is mounted should be clean and free of oils, vapors or other sorts of contamination. While UL 1236/ABYC chargers are "ignition protected" it is not recommend to install them where any gas vapor can accumulate. This includes LPG, gasoline, hydrogen gas or where stored solvents could spill & leak.


DC WIRING
The DC wiring is a very critical part of a chargers performance. Most manufacturers want to see a max voltage drop of between 1% & 3%. Voltage drop is determined by the amperage flowing through the cable over the "round trip" length. This means you add the full length of the negative and positive wires plus the max amperage that will flow to determine to your voltage drop. This 20A charger was wired up for less than a 1% voltage drop using 6GA wire. I personally prefer as little drop as possible. Realistically I could have easily wired this with 10GA wire and been at 2.75% voltage drop but Sterling ideally wants to see less than that and I don't stock 8GA wire, so 6GA it was..

A 3% voltage drop at 14.6V is roughly 0.44A of lost voltage between the charger and battery bank. This can potentially leave you with a charging voltage at the battery of just 14.14V. With DC charging sources bigger wire is almost always better..

I very often use this voltage drop calculator: Voltage Drop Calculator




The Temperature Sensor
Temperature sensing of your batteries can be very important to the longevity of a bank especially with valve regulated lead acid batteries such as AGM/TPPL or GEL. The hotter the climate you are in the more important temperature compensation is. Temperature compensation is more critical as temperatures rise rather than fall. As the battery temperature goes up, the battery charging voltage must come down. As battery temperatures drop the charging voltage can go up.

Heat is one of the number one enemies of batteries. If you have them in an engine room, which is not advised, you really do need a charger that has temperature compensation to reduce the charging voltage when the batteries begin to heat up. If your batteries can regularly exceed 80F then you'll ideally want a charger with temperature compensation. Earlier temp compensation on some chargers was sporadically successful at best, bordering on "dumb", as in not very smart. With newer technologies they can be accurate to within a degree or two which is more than enough.




Battery Temperature Sensor Location
In the picture below you can see the location of the battery temperature sensor.

It is important to mount this directly to the battery post so it senses the temperature of the bank correctly. The temp sensor should be mounted to the battery which has the most potential to get warmer than the others. For example, if your battery compartment backs up next to an engine room bulkhead, then the battery closest to that bulkhead would get the temp sensor.

The sensor also needs to be connected directly to the negative terminal, and not the positive terminal. This sensor has the ability to fry the charger if connected to the + terminal and then accidentally shorted. This sensor CAN NOT be fused and sense temp correctly, so, by ABYC standards, it can not be connected directly to a + post.

Always keep in mind, when stacking terminals on a battery post, that the highest current potential terminal is always placed on the bottom. In this case the two 2/0 negative cables go below the temp sensor ring terminal. There is also a limit of four terminals per battery post. Use buss bars if you need more than four items on a battery post.

ABYC standards now also prohibit wing nuts on battery terminals if any wire connected to the battery is larger than 6GA AWG. Use standard nuts with locking washers or nyloc nuts if you have enough thread left for the nylon in the nyloc nut to thread over.




Charger Feed Wiring
In this photo you can see how the charger is feeding the bank. With banks in parallel or series parallel it is important that the charger supplies it current across the bank. If you look you'll see that the positive feed and the negative return pull off opposite sides of the battery bank.

Wiring this way forces the current to flow through the entire bank and helps to minimize any intrabank imbalances. This is one of the most often violated rules of charging I witness on boats. It is important to note that this is not just for charging sources such as chargers, alternators, wind or solar but also for the DC loads. Always connect across your bank to keep intrabank imbalances to a minimum. As banks get larger there are more precise ways of wiring that can lead to better balancing but doing it this was gets you a lot further ahead than pulling everything off one end.

You will also note the three bussed ANL fuses on the left which protect the ALTERNATOR, HOUSE BANK and CHARGER wiring. The ABYC requires that any device connected directly to a battery be fused within 7" of the + battery post to protect the wiring. These fuses are not intended to protect the devices but rather the wiring in the case of a dead short to ground. While the 7" rule is often very tough to meet always try to get the fuses as close as you can to the battery + post. The wire marked HOUSE BANK + FEED is about 16" long but runs in a conduit for about 9", under the quarter berth, then comes out at the fuse.

Because the alternator and charger do not use the same size wiring as the house bank feed to the battery switch, they each need their own fuse to protect the wire.

When you parallel banks you add or combine the amperage as in Ah's, cranking amps or short circuit amperage. These group 31 wet cell batteries can pump out in excess of 1200 cranking amps at 70F. For just two of these batteries that is 2400+ amps of cranking current at 70F. The short circuit current is always slightly higher than CA at 70F. Marine Cranking Amps (MCA) are rated at 32F and Cold Cranking Amps (CCA) are rated at 0F. As temps drop you have less available cranking amps and as the temp climbs the more amps you have to fry things. 2400 amps is enough to weld metal with and that is not even the short circuit rating!

I have one customer with 4 Odyssey thin plate pure lead (TPPL) batteries with over 20,000 short circuit amps as a bank. If you short this bank the insulation will catch fire in mere seconds. Always fuse devices connected directly to the battery and fuse it for the WIRES ampacity rating.




Fuse Distribution Close-Up

This is the fuse distribution buss I talked about in the last photo. The three ANL fuses are bussed together with copper bar stock at the top of the fuses. The source wire from the house bank comes in the top and the ALTERNATOR, BATTERY SWITCH FEED, CHARGER/ACR are protected out the bottom.

There are many ways to fuse devices and banks like this. For this application I found the bussed ANL fuses a good fit.

The inverter fuse on the right is controlled via the battery switch and as such it was not "bussed" with the alternator, battery switch and charger/ACR.....




Close Up With ANL Fuse Covers Removed
This photos shows the ANL fuses and buss bar. Just makes it easier to see.

One of the benefits not yet mentioned of a charger like the Sterling is that you can use the charger as a 12V power supply if you disconnect or remove your batteries from the boat during off-season layup.

Wiring the charger direct to hard mounted buss bars and fuses, and not direct to the battey posts, means it can still power the vessels DC system even with the battery bank is disconnected and off line.

I use this Sterling charger to power the vessels DC power needs during the off season and it acts perfectly as a 12V power supply. +1 !!!!




Parallel Batteries - Correct Hook Up
This illustration will better show how to connect charger sources and loads. Connect "across" the bank and it will force the batteries to charge & discharge more evenly and uniformly. This is the recommended diagram by every battery manufacturer I know of from Trojan, Lifeline, Deka/East Penn to Rolls Battery and just about everyone in-between.




Parallel Batteries - Incorrect Wiring
I have used my battery tester many times in scenarios like this and in every example I see the bank unevenly balanced and the batteries show it under testing. I have a battery tester than can show me the differences in a bank of batteries wired like this, and it does matter. Do not just connect your charge sources or loads to one end of a bank.




Negative DC Wiring
The bottom negative wire on that buss bar is for the battery charger. If your boat is equipped with a battery monitor the chargers DC negative wire should be placed on the "load" side of the monitors shunt as is shown here..

As always the DC negative wire should be the same size as the DC positive wire. Using a DC negative buss bar is an easy way to keep the battery posts clean and free of clutter.




Wire The Temp Sensor & AC Wiring
In this photo I have plugged in the temp sensor and am testing the charger to see if it recognizes the temp sensor. It did. With the Sterling Remote Panel the charger will tell you the battery, charger and transformer temp to within 1 degree. A pretty cool feature.

The AC wiring should be sized based on the manual for your charger. For this charger it calls for 14/3 AWG AC colored wire. The input for the AC wiring is marked L - N - G or BLACK/HOT, NEUTRAL/WHITE & GREEN/EARTHING GROUND.

Your charger should ideally have it's own dedicated breaker in the AC panel sized to protect the AC wire you're using. It is not suggested to share a breaker with any other device for a fixed mounted charger. This one uses a 15A breaker and 14/3 AWG AC color coded wire.

Always install your AC & DC wiring to acceptable color code standards. For AC and a single phase charger like this it is AC = Black/HOT, White/NEUTRAL, Green/GROUNDING/EARTH

DC = Red/POSITIVE, Black or Yellow/NEGATIVE and Green/BONDING / EARTHING

It is not advised to run AC & DC wires together in the same bundle unless sheathed separately. Try to keep your AC/DC wiring runs separate or sheath the AC wires to keep them isolated from the DC wiring.




Wiring Up The DC Side
In this picture I have mounted the charger to a back board which will get mounted to the boat. The wires are affixed to the board with sufficient strain relief to prevent inadvertent loading of the attachment point to the charger. The ends of the wires are crimped with ring terminals using the proper tool and then sealed with adhesive lined heat shrink. I also coat the lugs with a terminal grease to prevent oxidation/corrosion at the lug/terminal strip interface.

One of the more critical aspects of charger installations, that I nearly always see violated, is the green case ground wire shown. If I had to guess I would say that nearly 85% of the installations I see are either not case grounded or the case ground wire is to small.

This green grounding wire grounds the chargers metal frame to the vessel and allows your over current protection devices to work properly, if there is an internal fault that shorts to the case.

This green wire gets sized for the DC side of the charger. The green AC ground will not satisfy the ABYC case ground requirement on an AC/DC battery charger. Follow me on this one. If there is a fault on the DC side of the charger the AC green wires size may not be able to handle this fault and could be undersized in having to handle that fault. This is why the requirement for the chargers case ground is for no less than one size smaller than the DC output wires.

The ABYC standard suggests that the case ground for chargers needs to be no less than one AWG gauge size smaller than the DC output wires. So, if you have 6 GA DC wire then you need no less than an 8 GA case ground wire. Even if your wire is already technically "over sized" your surveyor or insurance company may not know this so it is always best to wire it equal to or no less than one AWG size less than the DC output wires.

This green wire is routed from the charger to the ships DC ground buss which normally is earthed or grounded to the engine block..




Test & Program Your Charger
It is always a good idea to check with your battery manufacturer and obtain the recommended ABSORPTION, FLOAT and EQUALIZATION voltages. You will then program your charger to your batteries using the preset charge algorithms. Some chargers offer very little in the way of "smart" charge programs, sometimes four or less, and others, like this Sterling, offer plenty of options. As mentioned the Sterling PCU chargers also offer a user defined program that you can self program. Very cool for those applications that need it.

You can always choose to use GEL or AGM settings on wet cell batteries but a good quality charger will not go into equalization mode, and should not, while in AGM or GEL mode. If charging WET batteries with a GEL or AGM program you'd need to switch back to a WET program to equalize your batteries. In contrast you should NOT use AGM or WET settings on GEL batteries.

Just a note on equalization. Sulfation is like cancer of the battery, once it has set in it is only a matter if time before the battery passes on to battery heaven. Equalization is like Chemotherapy. It helps prolong the life but only prolongs the inevitable for some time. DO NOT over equalize your batteries as it can cause plate decay and lead to shorter life if over done. the best thing you can do for your batteries is keep them at or near 100% state of charge as often as possible. If on a mooring this will require wind or solar as an alternator simply won't do this and the batteries will sulfate prematurely.

I much prefer to equalize batteries ONE AT A TIME and monitor the progress with a hydrometer or, what I use, a sight refractometer. A good charger with temp sensor should monitor the temp but it never hurts to have a digital infrared thermometer on hand while equalizing. Please DO NOT equalize batteries unattended! It is very wise to be there during equalization. If you are unfamiliar with equalization PLEASE research this before hitting the button. To equalize one at a time simply disconnect the batteries not being equalized.

Thoroughly test your charger before leaving it to do it's thing. I personally don't like "unattended" charging even with the best built chargers in the world. This is just MY personal preference, so consider it, but don't take it as gospel. For unattended charging I use solar. It works for us, but may not for you.

Unfortunately for many boaters in warmer climates, with WET cell batteries, the ambient temps require that chargers be left on and most often "unattended". This is due to the exacerbation of battery self discharge in warmer temperatures. Heat kills batteries, cold helps prolong life.

Sulfation and self discharge greatly accelerate the warmer battery temps are, so do keep your batteries topped up as often as you can. In a perfect world all chargers would perform flawlessly for 20+ years. Sadly for the boating public we don't live in a perfect world and many a charger has taken out a perfectly good bank when it decided to pack it in, I see it OFTEN. When owners leave a charger on constantly when the charger fails it often takes the batteries out with it. This simple charger failure now becomes an entire new bank and a new charger as opposed to just a charger. If you don't need your charger on constantly consider NOT leaving it on and unattended, if you don't absolutely need to. Balancing unattended charging & its potentials for failure modes, versus the potential for self discharge and the resulting sulfation is one you'll have to tackle on your own.

Good luck with your installation!!



Good luck with your installation!!
__________________
______
-Maine Sail / CS-36T


To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.




Images In Posts Property of Compass Marine Inc.



Last edited by Maine Sail; 01-05-2012 at 01:35 PM.
Reply With Quote Share with Facebook
  #2  
Old 01-16-2012
josrulz's Avatar
Unpaid Intern
 
Join Date: Oct 2006
Location: Maryland
Posts: 989
Thanks: 0
Thanked 2 Times in 2 Posts
Rep Power: 8
josrulz is on a distinguished road
Thanks for another great article, Maine Sail. Our boat does not have a battery charger yet, but will have one by the end of the winter if all goes well. We are adding refrigeration and an additional battery. In total, we'll be charging two wet Group 31s and a wet Group 24 (reserve only). I had planned on getting an Iota charger (30 or 45 amp), but am wondering if the Sterling (30 or 40amp) might be worth the extra $. Thoughts?
-J
__________________
1984 Sabre 34 Mk I
Reply With Quote Share with Facebook
  #3  
Old 01-16-2012
Maine Sail's Avatar
Senior Member
 
Join Date: Jan 2003
Location: Maine Coast
Posts: 5,277
Thanks: 9
Thanked 115 Times in 84 Posts
Rep Power: 15
Maine Sail is just really nice Maine Sail is just really nice Maine Sail is just really nice Maine Sail is just really nice
Quote:
Originally Posted by josrulz View Post
Thanks for another great article, Maine Sail. Our boat does not have a battery charger yet, but will have one by the end of the winter if all goes well. We are adding refrigeration and an additional battery. In total, we'll be charging two wet Group 31s and a wet Group 24 (reserve only). I had planned on getting an Iota charger (30 or 45 amp), but am wondering if the Sterling (30 or 40amp) might be worth the extra $. Thoughts?
-J

Iota's are good bare bones work horses but I do prefer the Sterling. I've installed quite a few Iota's but they lack the features I often want or need in a charger and also lack a temp sensor. They are priced quite well but for a little more I do like the Sterlings. They are also quite efficient and a 60A Sterling can run on a Honda EU2000 with plenty left over for other things...

I was amused the other day when I flipped on my charger and saw it go over 15V but then I remembered I was shivering and it was -1F on-board. I have a temp sensor that was compensating for it being -1F..

I honestly can't speak highly enough of Mark G. and Sterling Power USA. Good folks...

I also like to be able to install remote display panels which the Iota's don't offer. For a bare bones charger they are good I just prefer something with a little more zing... I also like Mastervolt & Victron but Sterling is right in my back yard, and Mark Grasser, the US distributor, is wonderful to deal with.

I installed my last Xantrex charger this past fall and then only because it was a direct fit replacement for the Xantrex that had failed. Going with a different charger foot print would have cost the owner about 3 more hours of labor due to the custom nature of the install, so he bought the West Marine extended warranty....
__________________
______
-Maine Sail / CS-36T


To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.




Images In Posts Property of Compass Marine Inc.


Reply With Quote Share with Facebook
  #4  
Old 02-16-2012
josrulz's Avatar
Unpaid Intern
 
Join Date: Oct 2006
Location: Maryland
Posts: 989
Thanks: 0
Thanked 2 Times in 2 Posts
Rep Power: 8
josrulz is on a distinguished road
Quote:
Originally Posted by Maine Sail View Post
The location your charger is mounted in plays a critical role in its life span & longevity. Care should be taken to follow your manufacturers instructions of orientation, access to air, moisture or battery gas exposure.
Hi Maine Sail,
At the risk of completely taking advantage of both your expertise and your knowledge of the early Sabre 34, I'm asking a follow-up on this, if you don't mind. Perhaps other owners, Sabre and non-Sabre have a similar choice to make.

I'm about to install a 40 amp Sterling/ProMariner, and the two location options are:
  • Starboard cockpit locker, aft bulkhead - long DC wire runs to batteries (pushing 30 feet round trip), will need to extend temp sensor (won't reach), a dry but warm location
  • Water heater compartment (under Q-berth) forward bulkhead - tighter fit, not much room below charger to hull, sits just above water heater drain plug, warm but not as warm as cockpit locker usually and very short DC wire runs to batteries [note: will not fit on aft bulkhead of that area]
Alternatively, I could mount the charger under the nav desk in plain view, but I'd prefer to tuck it away, if possible.

Do you have a recommendation based on the other S34s you've worked on?

As always, I appreciate your expertise. I've designed my own system by pretty much ripping from your online articles--THANKS!
-J
__________________
1984 Sabre 34 Mk I
Reply With Quote Share with Facebook
  #5  
Old 02-16-2012
T37Chef's Avatar
Senior Member
 
Join Date: Oct 2006
Location: Maryland
Posts: 4,048
Thanks: 52
Thanked 26 Times in 25 Posts
Rep Power: 8
T37Chef will become famous soon enough
sticky this please!

Fanstastic write up, thanks again for another stellar post
__________________
Shawn
Tartan 37 - S/V Windgeist

To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.

Photo by Joe McCary
Reply With Quote Share with Facebook
  #6  
Old 03-16-2012
Junior Member
 
Join Date: Mar 2012
Posts: 3
Thanks: 0
Thanked 0 Times in 0 Posts
Rep Power: 0
JeremyP is on a distinguished road
Re: Marine Battery Chargers - Installation Tips & Considerations

Dang, wish I had found this before I installed my own charger. Nice job, you make it look sweet. My install is not a pretty, but went about the same. Nice piece- Jeremy
Reply With Quote Share with Facebook
  #7  
Old 03-16-2012
boatpoker's Avatar
Senior Member
 
Join Date: Jul 2008
Location: Toronto
Posts: 1,036
Thanks: 8
Thanked 22 Times in 21 Posts
Rep Power: 7
boatpoker is on a distinguished road
Re: Marine Battery Chargers - Installation Tips & Considerations

Thanks Maine Sail, best post of the year.

I do have one issue with most "marine" chargers. Many are branded as "marine" but not ignition protected, so the unwise put these things in gasoline or engine compartments.
Many "marine" chargers are maked as UL1236 and state they are ignition protected but are they really. We have no way of knowing because UL1236 does not cover ignition protection. For ignition protection it shuld be marked with UL1500.

I called tech support at one well known charger manufacturer asking if their charger marked "UL1236 Ignition Protected" truly was ignition protected, his response ...."probably not ".

I sent an email to another well known manufacturer asking the same question, the response ...."whats ignition protected". I have this email framed.
__________________
Dirt People Scare me
Reply With Quote Share with Facebook
  #8  
Old 03-16-2012
Maine Sail's Avatar
Senior Member
 
Join Date: Jan 2003
Location: Maine Coast
Posts: 5,277
Thanks: 9
Thanked 115 Times in 84 Posts
Rep Power: 15
Maine Sail is just really nice Maine Sail is just really nice Maine Sail is just really nice Maine Sail is just really nice
Re: Marine Battery Chargers - Installation Tips & Considerations

Quote:
Originally Posted by boatpoker View Post
Thanks Maine Sail, best post of the year.

I do have one issue with most "marine" chargers. Many are branded as "marine" but not ignition protected, so the unwise put these things in gasoline or engine compartments.
Many "marine" chargers are maked as UL1236 and state they are ignition protected but are they really. We have no way of knowing because UL1236 does not cover ignition protection. For ignition protection it shuld be marked with UL1500.

I called tech support at one well known charger manufacturer asking if their charger marked "UL1236 Ignition Protected" truly was ignition protected, his response ...."probably not ".

I sent an email to another well known manufacturer asking the same question, the response ...."whats ignition protected". I have this email framed.
But of course they all put the disclaimer that chargers should not be installed in battery compartments or areas where "vapors" may accumulate, specifically hydrogen gas... This means ANY UL 1500 approved "ignition protected device" loses its "ignition protection" rating in an area where hydrogen gas could be present. Fun huh....

So, under UL 1500, it is technically impossible to have an "ignition protection" rating for a device in a battery compartment, even with a UL1500 approval. here's the catch... This technically makes all "ignition protected" fuses, which are an ABYC requirement, null & void if they need to be within 7" of the positive post.... Catch 22, gotcha! Gotta love the standards.................

Beyond minor technicalities of UL1236 & 1500 there are lots of items not ignition protected that are commonly in use on boats. For example I don't know of a single glass, ATM or ATC fuse that is ignition protected yet manufacturers ship them with wires that need direct battery connection. I only know of one brand of ANL fuse that is "ignition protected" and that is Blue Sea yet I see builders and DIY's using non-ignition protected ANL's on a regular basis as well as other non ignition protected fuses.... But, of course, any fuse in the direct vicinity of a battery technically loses its ignition protection rating anyway it we go by UL 1500...


All we can do is the best we can do, and that is to not install chargers in battery compartments, and to install chargers that meet at least UL1236...

I was just at an ABYC seminar today and the presenter, one of the best in the industry, was SLAMMING one particular charger manufacturer for a number of "violations" from lack or a case ground to non-conforming terminal strips.. Sadly this brand is one of the biggest sellers with the worst tech support, I won't name names...

Interestingly enough he was praising the ProMariner Pronautic P and Sterling ProCharge Ultra chargers that the article was written about....
__________________
______
-Maine Sail / CS-36T


To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.




Images In Posts Property of Compass Marine Inc.



Last edited by Maine Sail; 03-16-2012 at 10:10 PM.
Reply With Quote Share with Facebook
  #9  
Old 03-16-2012
boatpoker's Avatar
Senior Member
 
Join Date: Jul 2008
Location: Toronto
Posts: 1,036
Thanks: 8
Thanked 22 Times in 21 Posts
Rep Power: 7
boatpoker is on a distinguished road
Re: Marine Battery Chargers - Installation Tips & Considerations

Agreed ... but I'd still want to see UL1500 in gasoline engine compartments where many if not most chargers are located on power and sailboats.
__________________
Dirt People Scare me
Reply With Quote Share with Facebook
  #10  
Old 03-18-2012
Maine Sail's Avatar
Senior Member
 
Join Date: Jan 2003
Location: Maine Coast
Posts: 5,277
Thanks: 9
Thanked 115 Times in 84 Posts
Rep Power: 15
Maine Sail is just really nice Maine Sail is just really nice Maine Sail is just really nice Maine Sail is just really nice
Re: Marine Battery Chargers - Installation Tips & Considerations

Quote:
Originally Posted by boatpoker View Post
Agreed ... but I'd still want to see UL1500 in gasoline engine compartments where many if not most chargers are located on power and sailboats.
I don't know of any battery charger that carries UL 1500. UL 1236 has a "marine supplement" that includes ignition protection. I spoke with the designer of the Sterling Pro Charge Ultra and he confirms, rather adamantly, that the PCU & Pro Mariner version of this charger are in fact 100% ignition protected. He also said most any charger carrying a UL 1236 label will be as well because that is part of the UL 1236 marine testing...
__________________
______
-Maine Sail / CS-36T


To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.




Images In Posts Property of Compass Marine Inc.


Reply With Quote Share with Facebook
Reply


Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
 
Thread Tools

 
Posting Rules
You may post new threads
You may post replies
You may post attachments
You may edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Jabsco Marine Head Installation Tips sailjunkie Gear & Maintenance 13 03-22-2011 11:29 PM
Battery Chargers for Multiple Battery Banks btrayfors Electrical Systems 5 11-15-2009 11:57 AM
Battery chargers wchevron Gear & Maintenance 13 05-09-2008 09:19 PM
BATTERY CHARGERS drynoc Gear & Maintenance 2 02-27-2004 02:01 PM


All times are GMT -4. The time now is 06:56 AM.

Add to My Yahoo!         
Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2014, vBulletin Solutions, Inc.
SEO by vBSEO 3.6.1
(c) Marine.com LLC 2000-2012

The SailNet.com store is owned and operated by a company independent of the SailNet.com forum. You are now leaving the SailNet forum. Click OK to continue or Cancel to return to the SailNet forum.