SailNet Community - Reply to Topic
Thread: "The chainplate will buff out and probably be okay" Reply to Thread
Title:
Message:
Trackback:
Send Trackbacks to (Separate multiple URLs with spaces) :
Post Icons
You may choose an icon for your message from the following list:
 

Register Now



In order to be able to post messages on the SailNet Community forums, you must first register.
Please enter your desired user name, your email address and other required details in the form below.
Please note: After entering 3 characters a list of Usernames already in use will appear and the list will disappear once a valid Username is entered.


User Name:
Password
Please enter a password for your user account. Note that passwords are case-sensitive.

Password:


Confirm Password:
Email Address
Please enter a valid email address for yourself.

Email Address:
OR

Log-in









Human Verification

In order to verify that you are a human and not a spam bot, please enter the answer into the following box below based on the instructions contained in the graphic.



  Additional Options
Miscellaneous Options

Click here to view the posting rules you are bound to when clicking the
'Submit Reply' button below


  Topic Review (Newest First)
07-12-2015 08:36 PM
aeventyr60
Re: "The chainplate will buff out and probably be okay"

Hull #60 must have been built on a Friday. No backing plate. Used 6 MM SS backing plate and 3/8 bolts. Increased width and thickness of chain plate as well. Should get me around to the other side of the world someday.
07-12-2015 12:05 PM
RichH
Re: "The chainplate will buff out and probably be okay"

That's quite different from my '84 (#423) boat. The stud heads were tack welded to a ~1/8" thk X 1" wide plate, and the 3/8" shouldered bolting studs used were about 2.5" to 3" long.
07-12-2015 11:18 AM
aeventyr60
Re: "The chainplate will buff out and probably be okay"

^The second man was really worthwhile...I got to take the pictures...Yes, getting that old wood out was one of the hardest parts of the entire process.

Was amazed that the puny 5/16 studs held up for so long and the puny piece of stainless steel rod welded across the back of the bolts were still intact. Hardly any bonding material behind those t nuts as well. Must have been from a pretty good designer...
07-12-2015 10:49 AM
RichH
Re: "The chainplate will buff out and probably be okay"

This is how I 'renovated' my Ty37 chainplate knees about 12 years ago:

I removed the chainplate and cut into the knee along side of where the plates were attached into the knee to remove the internal 'E-shaped contraption' that holds the non-removeable studs, and most importantly then removed all the wet internal 'softwood' that was apparently used as a form over which the knee was constructed. As stated before, this OEM knee was a damn good idea ..... if the knee was kept sealed from water intrusion. However when the interior of the knee does become wetted and then rots the studs SEQUENTIALLY loosen and the chainplate and studs start to rust AND you get 'saddle stress' cracks (sequentially) across the face of the plate emanating horizontally from each stud borehole in the plate - such saddle stress failures look like mini-happy faces. All this is due to rot and moisture under the plate in the knee. The only real problem with the OEM 'design' is that the studs are permanent and the wood core retains moisture.
Remove that wood, put nuts on that inner plate, put ferrules through a FRG core so the bolts are removable, beef up that knee because you disturbed/cut it --- all is well.

So, cutting through the knee next to the OEM plate, I removed the internal strap with the stud heads welded, all the wood, and tapered the cut to a 12:1 face angle
After chiseling, prying and cussing to remove all the sodden softwood, I then ground all the interior faces to 'clean' and added approx. 1/4-3/8" of roving/cloth to all the internal faces - this to add stiffness to the remaining parts of the knee. I built 2 new 'webs' of approx 1/4-3/8" FRG cloth - these 'webs' are perpendicular to the hull face ... the new 'box' fits 'sloppily' between the these 'webs'. My rebuilt chainplate knees are mostly 'hollow' (a fabricated box beam).
The 'box': I constructed an inner 316 SS plate to mimic the internal 'OEM strap with the studs attached', this time with 316 nuts seal welded to the new inner 316 plate. (Imagine the 'box' as having one side/face being the internal plate, the opposite side being where the the chainplate attaches, and flat sides between the two.) I then measured all the 'in place' dimensions, took the interior plate + welded-on nuts made a form (a 'box'): Internal Plate with nuts, stainless steel 316 ferrules though which the new removable 3/8" 316 shoulder BOLTS would pass through to the weled-on nuts, then liberally WAXED the internal bore of the ferrules and nut threads to prevent epoxy adhesion, filled the 'box' with cut and chopped FRG roving and filled the 'box' to a smooth top face (when on a table). When cured, I simply drilled into to internal ferrules to clear any wax and errant epoxy and ran a 'long' tap into the nuts to clear them. This all created a solid (box) of strand filled epoxy + 3/8+" ID ss ferrules + 316 nuts on the internal plate, which I then inserted and epoxied in place and flat/flush to the area where the new chainplates would attach - exactly to where the OEM plates attached; I left the 'far' side of the plate/'box' with some extra room/space for the new bolts to penetrate through.
With the new 'internal structure' epoxied in place, I then overlayed the remnants of the OEM knee (overlapping to well beyond the sides of the OEM knee to the interior hull sides) and applied ~3/8"+ of new heavy FRG cloth/epoxy over the entirety of the old knee. The ferrules were easily seen through the new overlay, so it was easy to bore into the new (not fully cured FRG) to locate those ferrules.
Before the new epoxy/FRG overlay full cured, I covered the new chainplates with plastic wrap (so they didnt stick to the curing epoxy/FRG) and torqued them in place to the internal 'box' and knee structure ... in order to have a 'perfect' flat face (friction surface) on the the new FRG overlay between the new chainplate and the new internal structure *** (see below).

*** When I was the assoc. chief engineer in a 'heavy/mega-lift' / hazardous design bureau I would NEVER EVER allow any structure to be constructed with ANY bolts primarily subject to SHEAR!!!! all such non-welded joints were to be full compression FRICTION JOINTS in which the tensile strength of properly torqued bolts supplied the FORCE to drive the two mating faces together; therefore, friction carried all the load; and if and only if, the bolts stretched the bolts then 'could' support the shear load on the shoulders of any bolt ... but that would be if and only if .... AFTER the frictional force joint failed. You need perfectly FLAT faces to affect a good friction joint. Such a friction joint also 'prestresses' the underlayment and makes it MUCH stronger (in shear, in bending/buckling, etc.). Bob Perry apparently used this very same design concept of a proper 'friction joint' in those Ty37 knees - admirable and quite remarkable.
My new plates were increased by ~25% thickness, that OEM 'kink' where the plates pass through the deck was made into a 'long radius bend' to lessen the obvious and vulnerable stress riser of the old plate (press brake) 'kinked' design. The plates are mirror polished to 'brilliant' - and 'slathered' with Boeshield™. I retorque (to 80%) the bolts yearly, replace them every 5-6 years.

I guess what Im stating here is that the OEM design was excellent stresswise; the only fundamental problem was moisture intrusion + wood core, and the studs werent 'removable'. My calcs of the OEM design indicated that the intrinsic Safety Factor well exceeded 4:1. Since I was 'disturbing' the old structure, I decided to beef the new replacement structure ... 'up a few notches' for 'just in case'.
I didnt want to go to the external chainplate route, as external plates require one to constantly re-reeve jibsheets every time one changes the fairlead car position; plus, external plates require a larger 'kink' (stress riser) in that chainplate. Plus, when I was PHRF racing this boat, I was sheeting and barberhauling the headsail 'inside' the shrouds, to make it 'point' better and external plates would be a 'REAL' PITA when doing so and without adding additional inside jib tracks.

If I were doing this all over today, Id consider to rip out the entirety of those knees and put in a system equivalent to what Beneteau uses - Rods instead of plates with kinks, those rods affixed to trunnions affixed to the internal hull instead of 'bolts', and plate through-decks with leak-proof membranes that accommodate rigging movement (and no side loads on the through-decks). ---- Pure and elegantly simple straight-through tensile stress accommodation - a nice evolution. (Someone at Beneteau probably designed heavy lift cranes, etc. ??)

Sorry but I was too busy and covered head to toe with epoxy to take any pics of these knee refurbs. I still have one left to do (totally hidden behind all that 'cabinetry, shelving and veneer, etc.' in the shower stall) so maybe Ill take some pics then.


FWIW - Assuming that you have replaced those disastrous screwed together Grand Deer rigging toggle bolts, that welded together bowsprit cranse collar is probably more vulnerable to failure than any other part of the rigging. I have a 'better' design ... in the shape of the greek letter 'phi' ()where all the principal stress is carried by a continuous plate between the headstay and bobstay connection. The welding on the OEM cranse collar is very vulnerable to cracking - check it often.

The infamous Grand Deer toggle bolts:
07-12-2015 06:07 AM
aeventyr60
Re: "The chainplate will buff out and probably be okay"

^More pictures of laying up the glass here:
07-12-2015 05:57 AM
aeventyr60
Re: "The chainplate will buff out and probably be okay"

Quote:
Originally Posted by rdhoagland View Post
Rich,

I concur with what you say on this post. I'm planning to make the CP knee rebuild you are describing while I'm here in Guatemala but have limited materials available (e.g. no G-10 or shoulder bolts appear to be available in the country). I may have to modify to use epoxy-treated Teak and hex head bolts instead. My plan is to cut a 2 1/4 inch wide area of FG behind the existing chainplate. Replace the existing wood and bolts with new teak or G10 block (1" x 3" x 13") and a backing strip with SS nuts. The edges of the FG at the cut will be feathered back for approximately 1 inch and a new 1/4 inch layup of FG placed using stranded FG mat and epoxy resin. Due of the limited access space from the existing cabinetry, I was hoping than a FG overlay of approximately 3 inches along each side of the existing knee would be structurally adequate for this buildup.

I hope you might be able to provide some input regarding my tentative plans, or pass-on more specifics regarding experiences you may have had rebuilding the chainplate knees on a TY37.

New Sailnet member

Bob Hoagland
s/v Inca Rose (1983 TY37 Mark II, Hull #383)
now on the hard in Rio Dulce, Guatemala
I cut out the existing fiberglass cap that was encasing the old wood as RichH describes. I used plastic from a case of beer to line the cap, filled with epoxy filler, inside was the backing plate and a solid piece of hard wood and the new bolts, which were welded to the backing plate. Just before the epoxy filler went off, peeled off the the old cap. The resulting new form was then glassed in. A few pictures for you here:
07-11-2015 10:39 PM
rdhoagland
Re: "The chainplate will buff out and probably be okay"

Rich,

I concur with what you say on this post. I'm planning to make the CP knee rebuild you are describing while I'm here in Guatemala but have limited materials available (e.g. no G-10 or shoulder bolts appear to be available in the country). I may have to modify to use epoxy-treated Teak and hex head bolts instead. My plan is to cut a 2 1/4 inch wide area of FG behind the existing chainplate. Replace the existing wood and bolts with new teak or G10 block (1" x 3" x 13") and a backing strip with SS nuts. The edges of the FG at the cut will be feathered back for approximately 1 inch and a new 1/4 inch layup of FG placed using stranded FG mat and epoxy resin. Due of the limited access space from the existing cabinetry, I was hoping than a FG overlay of approximately 3 inches along each side of the existing knee would be structurally adequate for this buildup.

I hope you might be able to provide some input regarding my tentative plans, or pass-on more specifics regarding experiences you may have had rebuilding the chainplate knees on a TY37.

New Sailnet member

Bob Hoagland
s/v Inca Rose (1983 TY37 Mark II, Hull #383)
now on the hard in Rio Dulce, Guatemala
11-27-2012 08:16 AM
chucklesR
Re: "The chainplate will buff out and probably be okay"

"I didn't see the need for stainless"

Translated - the next owner will have a little project in a year or two.
11-26-2012 11:24 PM
MedSailor
Re: "The chainplate will buff out and probably be okay"

Quote:
Originally Posted by xymotic View Post
Bob Perry personally talked me out of looking at Tayana 37's largely due to chainplate issues.
PFFFFFFFTHHH!!! Don't listen to Bob Perry! What, you think he knows something just because he designed them!?! If he's so smart then where is HIS youtube video? Go with the guy on the youtube video, he sounds like he knows what he's talking about. All you need is some of this to buff it out.


MedSailor
11-25-2012 11:24 PM
xymotic
Re: "The chainplate will buff out and probably be okay"

Bob Perry personally talked me out of looking at Tayana 37's largely due to chainplate issues.
This thread has more than 10 replies. Click here to review the whole thread.

Posting Rules  
You may post new threads
You may post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On

 
For the best viewing experience please update your browser to Google Chrome